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An experimental investigation of the two-dimensional incompressible mixing 
layer was carried out. The measurements provide new information on the 
development of the mean and turbulent fields towards a self-preserving state 
and on the higher-order statistical characteristics of the turbulent field. The 
relevance of initial conditions to the development of the flow is discussed in the 
light of both present and previous data. Measurements of spectra, probability 
densities and moments to eighth order of all three velocity-component fluctua- 
tions at  various transverse positions across the flow were carried out using an 
on-line digital data acquisition system. The probability density distributions of 
the derivative and the squared derivative of the longitudinal and lateral velocity 
fluctuations were also determined. Direct measurements of moments to eighth 
order of the velocity derivatives were attempted and are discussed in the light 
of the simultaneously measured histograms. The problems in obtaining higher- 
order statistical data are considered in some detail. Estimates of the integral 
time scale of many of the higher-order statistics are presented. The high wave- 
number structure was found to be locally anisotropic according to both spectral 
and turbulent velocity-gradient moment requirements. Higher-order spectra to 
fourth order of the longitudinal velocity fluctuations were measured and are 
discussed. Finally the lognormality of the squared longitudinal and lateral 
velocity-derivative fluctuations was investigated and the universal lognormal 
constant p was evaluated. 

1. Introduction 
The two-dimensional incompressible turbulent mixing layer is one of the 

simplest conceivable free shear flows and one which plays an essential role in 
many technological problems. A fundamental understanding of the structure of 
this flow is still far from complete although the general features of the flow were 
established in 1947 by Liepmann & Laufer. More recently, detailed investiga- 
tions by Sunyach & Mathieu (1969), Wygnanski & Fiedler (1970), Batt, Kubota 

I4 F L M  74 



210 F .  H .  Chumpagne, Y .  H .  Pao and I .  J .  Wygnanslci 

& Laufer (1971), Spencer & Jones (1971), Brown & Roshko (1971), Winant 
(1 972) and Pate1 (1 973) have provided considerable new information and also 
raised new questions on the structure of the flow. Interesting questions arise 
from the fundamentally different flow development observed by Liepmann & 
Laufer (L & L) and by Wygnanski & Fiedler (W & F). W & F speculated that 
this difference was caused by the presence of a trip wire on the splitter plate in 
their experiment which was not employed by L & L. Batt et al. (1971), in their 
own experimental facility, were able to reproduce either the L & L or the 
W & F results, depending on whether a trip wire was used, thereby verifying the 
important influence of the initial conditions on the development of the flow. 
Earlier, Bradshaw (1966) had investigated effects of initial conditions on free 
shear layers. Winant (1972) performed both hot-wire and flow-visualization 
studies on an undisturbed, but rather low Reynolds number, two-dimensional 
mixing layer and found considerable evidence for the existence of an orderly 
process controlling the growth of the layer. This process, termed vortex pairing, 
involves the interaction of vortices, which form as a result of the shear-layer 
instability. The vortices were observed to interact pairwise by rolling around 
each other forming a new single vortical structure of approximately twice the 
wavelength of the former vortices. Winant’s, as well as Brown & Roshko’s, 
observations may shed new light not only on the structure of the mixing layer 
but also on the effects of initial conditions on the development of the flow. 

The higher-order statistical characteristics of turbulent shear flows, and in 
particular the statistical properties of the small-scale structure are areas where 
significant data is still lacking. New and higher quality data are required to test 
the validity and/or limitations of the original universal similarity theory of 
Kolmogorov (1941) and the later reformulation by Kolmogorov (1962), Oboukhov 
(1962) and Yaglom (1966). An inherent part of Kolmogorov’s theory is the postu- 
late of local isotropy, that is, at sufficiently high Reynolds number, the small- 
scale turbulent structure is isotropic even when the large-scale structure is not. 
Convincing experimental support for the postulate is lacking, and evidence for 
anisotropy of the fine-scale structure in turbulent shear flows is accumulating 
(see Weiler & Burling 1967; Gibson, Stegen & Williams 1970). Departures from 
Kolmogorov’s original theory have been observed by Gibson et al. (1970), 
Wyngaard & Tennekes (1970) and Van Atta & Chen (1970). Measurements of 
higher-order spectra and moments of the velocity fluctuations and their deriva- 
tives in high Reynolds number flows would provide new information with which 
to test Kolmogorov’s theories. 

Frenkiel & Klebanoff (1971) investigated the statistical properties of velocity 
derivatives in low Reynolds number grid flows and presented data on the mo- 
ments to eighth order. Tennekes & Wyngaard (1972) pointed out the difficulties 
in obtaining moments of velocity derivatives in high Reynolds number flows 
caused by the large dynamic range of the signals and integration time require- 
ments. The difficulties of obtaining such data even at moderate Reynolds 
numbers in laboratory flows is demonstrated by the results of the present study. 

The objectives of the present study are to provide new information on the 
development of the mean and turbulent fields to a self-preserving state and to 
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FIGURE 1. Schematic diagram of facility and co-ordinate system. 
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present data on the higher-order statistical characteristics for the two-dimen- 
sional turbulent shear layer. Particular emphasis is placed on determining the 
statistical properties of the small-scale structure and providing significant data 
on the probability densities of the longitudinal and lateral velocity fluctuations 
and their derivatives. The data presented here were taken before the more recent 
references were published, and the study was prematurely terminated for reasons 
beyond the authors’ control. The new questions regarding the development of 
the mixing-layer flow to a self-preserving state will not be settled by the present 
data, but these data will provide more information on which to base a new 
study. 

2. Experimental apparatus 
2 .  I .  The two-dimensional mixing-layer ,facility 

A low speed, low turbulence level blower-tunnel was used to supply the flow. 
A backward step blower powered by a 5 h.p. regulated d.c. motor supplied the 
air flow through a short diffuser section to a plenum chamber 1-83 m in diameter. 
The plenum chamber contained two screens and a deep honeycomb in order to 
reduce the turbulence level at  the nozzle exit. The air was exhausted through a 
rectangular nozzle 17.8 cm wide and 50.8 cm long. The contraction ratio was 
28 : 1 and the turbulence level was less than 0.1 yo. The flow was allowed to mix 
on one of its boundaries with the surrounding quiescent air (figure l), the other 
three boundaries being solid. To prevent a lengthy transition region, a trip 
wire was placed just upstream of the mixing region. Eighteen mesh fibreglass 
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screens were placed about 1-5 m from the open boundary of the test section to 
help damp out extraneous room drafts. The air was cleaned using a Honeywell 
electrostatic precipitator, and its temperature did not exceed the ambient room 
temperature by more than 1 O F .  All measurements were made a t  a nozzle exit 
speed U, of 8 m/s. The facility is essentially the same facility used by Wygnanski 
& Fiedler (1970). 

2.2. Instrumentation 
Velocity fluctuations were measured with Disa type 55DO 1 constant-temperature 
anemometers in conjunction with Disa 55D10 linearizers. The linearizers were 
calibrated to known flow conditions in the free-stream flow of the mixing-layer 
facility. An overheat ratio of 0.7-0.8 was used for all wires. Lateral-component 
fluctuations were measured with a symmetric X-array and the lateral-component 
sensitivities were obtained by yawing the probe 5” in the plane parallel to 
that of the two wires. The single and X-array hot-wire probes were constructed 
from 2-3,um tungsten wire which was copper/gold plated. The active or un- 
plated portion of the wires was about 0-40mm in length and located in the 
geometrical centre of the total wire. Typically, the distance between support 
stems was 3 mm to avoid support-stem flow field disturbances. For X-wire 
probes, the wires were separated by about 04-0-5mm or one (active) wire 
length, a value chosen with Wyngaard’s (1968) results in mind. The 0.40 mm 
length corresponds to a length-to-diameter ratio of 175, a minimum value of 
this ratio required to keep a reasonably uniform temperahre distribution 
(Champagne, Sleicher & Wehrmann 1967). Kolmogorov’s length scale qK is 
about 0.10mm in the central region of the flow. No wire-length corrections 
were applied to  the data. The velocity fluctuation signals were differentiated 
using an analog circuit which consisted of a Philbrick P65AU operational 
amplifier used as a follower, a Philbrick/Nexus Model 1003 FET operational 
amplifier used as a differentiator, and two Krohn-Hite Model 330 band-pass 
filters. One filter was placed at the circuit input to eliminate the high frequency 
noise from the anemometer and linearizer before differentiation and the other 
at the circuit output to improve the signal-to-noise ratio and to minimize 
aliasing. Care was taken to avoid phase shift and amplitude distortion of the 
signal wave forms. The total phase shift of the overall differentiator circuit was 
quite linear with frequency over the band of interest. The overall signal-to-noise 
ratio and the dynamic range, defined as the maximum allowable signal level 
without distortion or clipping divided by the r.m.5. (or standard deviation u) of 
the signal, of the differentiator circuit depends on the signal level encountered, 
which is a function of position in the flow. For the central region of the flow, 
typical values are 20 : I or 26 dB and k 20 v, respectively. The amplitude response 
of the differentiator circuit was linear with frequency up to about 12 kHz as 
the signal was low-pass filtered a t  15 kHz. Kolmogorov’s frequency fK, defined 
as ?7/(2nq,), where is the mean velocity, is about 7.5 kHz. The second- 
derivative circuit had a similar frequency range but the overall signal-to-noise 
ratio was only 4 and the dynamic range was 65 r. It should be noted that the 
noise values used in computations of signal-to-noise ratios were determined for 
each overall circuit by measuring the output (noise) when the hot wire was 
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placed in the low turbulence intensity free stream a t  the same mean velocity 
as that occurring at the position of interest in the turbulent flow. 

Nearly all signal processing was carried out using a direct on-line computer 
system. Two signals were sent to the computer, the total linearized signal for 
computing mean velocities and a high-pass filtered version for computing 
fluctuation quantities; filtering trims off the d.c. component and allows significant 
amplification to improve resolution. The velocity fluctuation signals were 
filtered by a Krohn-Hite Model 3340 band-pass filter between 0-10Hz and 
15 kHz. Both the total and filtered signals were sent through Dynamics Model 
7514 amplifiers and shielded coaxial cables to an IBM Model 1827 analog-to- 
digital converter and Model 360-44 computer, the transmission system being 
free of distortion up to 20 kHz. When derivative signals were to be analysed, 
the differentiator circuit replaced the Model 3340 filter. The continuous signals 
were converted to digital samples with a resolution of 14 bits plus a sign bit and 
the maximum sampling rate was 18000 s-l. The hot wires were normally cali- 
brated directly on-line to determine the overall gain of the system. Analog 
checks on the mean velocity and turbulence intensity values were consistently 
carried out in every computer run and excellent agreement with the digital 
values was always found. 

2.3. Computational techniques 

Spectral measurements were obtained by means of the fast Fourier transform 
algorithm for time series which is discussed in detail by Cooley, Lewis & Welch 
(1967). A computer program employing this technique was developed by Pao, 
Hansen & MacGregor (1969) for on-line processing of turbulence data and was 
used in this study. The samples were processed in ensembles of 8192, dictated 
by computer memory requirements as the program performed its operation in- 
core and retained a running average of the spectral estimates. Typically, from 
100 to 300 ensembles (or up to 2.5 x lo6 samples) were processed to ensure 
statistical convergence of the ensemble-averaged spectral estimates, which were 
monitored through intermediate print-outs. A standard boxcar spectral window 
of 2.18 Hz was used for all computations and analog checks of several spectral 
points fell within & 10 % of the digital values. Also, the r.m.s. of the fluctuating 
signals were determined both from the computed spectra and by the usual 
analog method and the results always agreed to within a few per cent. Higher- 
order spectra were measured in the same manner as above, only the digitized 
samples were raised to the appropriate power in the computer before fast 
Fourier transforming. The first-order or ordinary velocity fluctuation spectra 
were effectively prewhitened after being sampled by the use of transverse filtering 
(Blackman & Tukey 1958). The main purpose of prewhitening after the data have 
been obtained in digital form is to avoid difficulty with the minor lobes of the 
spectral windows, commonly referred to as a ‘spectral leakage’. The result of 
this leakage problem is to distort the high frequency end of the velocity spectra 
where the spectral values are five or six orders of magnitude below that of the 
large-scale energy-containing region. One way of circumventing this problem 
is to measure the spectrum of the time derivative of the signal and then compute 
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the spectrum of the signal itself from the appropriate identity relating the two. 
We chose to do both and compared the results from our measured prewhitened 
velocity spectrum with the measured (non-prewhitened) velocity-derivative 
spectrum : excellent agreement was found. The same comparison without pre- 
whitening the velocity spectrum indicated that the spectral estimates of the 
velocity signal in the region where the spectral values were down roughly six 
orders of magnitude from the largest values were considerably overestimated by 
spectral leakage. 

Histograms and moments to eighth order were obtained from the high-pass 
filtered signals. The moments were computed directly from the time series and 
not from manipulating the histograms or probability density distributions. The 
signals were sampled a t  rates of 300-18000 s-l, depending on the nature of the 
signal, and the data were processed in ensembles of 30000 samples. The effect 
of sampling rate on the moment estimates is discussed in a subsequent section, 
but as was expected for stationary random signals, the various sampling rates 
gave nearly identical results. The estimates of the various moments and the 
histogram from each ensemble were averaged together with their counterparts 
from other ensembles to form running means for each moment and the histo- 
gram. The running means of the moments were printed out with the on-line 
printer after each ensemble had been processed to monitor the convergence of 
the moment estimates. Typically, for a sampling rate of 1 03-s-l, the measured 
distributions and moments of the velocity fluctuations represent an average of 
over 30 ensembles or about lo6 samples and for a total sample length of lo3 s. 

Whenever feasible, the overall on-line system and programs were checked 
with known signals. For instance, power spectra of first, second, third and fourth 
order of a sine-wave input signal were determined for various frequencies in the 
band pass of interest. Similarly, moments to eighth order of sine-wave inputs for 
various frequencies were measured and excellent agreement with theoretical 
values were found. Free-stream spectra and moments of the velocity fluctuations 
and their derivatives were also obtained to determine relevant electronic noise 
levels in the data. 

3. Results and discussion 
3.1. Flow development 

The basic development of the mean velocity profiles is shown in figure 2. Al- 
though the same measurements were made previously by Wygnanski & Fiedler 
(1970) in this apparatus, they were repeated here because the current measure- 
ments had to be t,aken at  a lower velocity and some minor changes were made in 
the apparatus. The profiles appear to be similar from x = 39.5 cm and to about 
x = 80 em, where boundary-layer effects from the side wall start to affect the 
flow field. 

The growth of the mixing layer with distance from the step can be estimated 
from figure 3, which presents the loci of points a t  which the mean velocity is 
equal to 0.95,0*50 and 0.10 of the free-stream velocity. The spread of the mixing 
layer in the present investigation is nearly the same as that observed by Pate1 
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FIGURE 2. Development of mean velocity field. x: 0, 39.5 cm; 
0, 49.5 om; 0, 59.5 cm. y = intennittency. 
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FIGURE 3. The growth of the mixing region with downstream distance. 
A, W & F ; m, Pate1 ; 0, present results. 
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Author 
YO.6 - Yplate Yo.s5 - Yo.1 

2 0  (cm) Ream= 2-Zo -2--2, 

Liepmann & Ltlufer (1947) 0 9 x  106 
Wygnanski & Fiedler (1 970) -1 .9t  5 x 1 0 '  
Batt et aE. (1970) 6 6 x  l o 5  

- 4.3t 
Spencer & Jones (197 1) 0 1 x 106 
Pate1 (1973) - 1.9 2 x  106 
Present study 5 4 x  lo5 
Batt (1974) 6 6 x l o 5  

0.031 0.17 
0.048t 0.23t 
0.06 0.17 
0.07t 0.23t 

0.027 0.19 
0.035 0.208 
- 0.22 

0-04 0*19$ 

t Trip wire used. 
$ Obtained by assuming an error-function profile with CT = 11 as the authors did not 

show an experimental velocity profile for this case. 

TABLE 1 

(1973) and Liepmann & Laufer (1947), and is somewhat less than that in the 
corresponding flow reported by Wygnanski & Piedler ( I  970). The latter difference 
is attributed to the failure of the trip wire to trigger transition and produce a 
turbulent boundary layer. A hot wire was traversed near the step downstream 
of the trip wire and it was indeed observed that the flow although disturbed was 
not turbulent. Table 1 provides a comparison of the various'spreading para- 
meters reported for a uniform flow mixing with quiescent surrounding fluid. The 
second column shows the effect of a trip wire on the location of the hypothetical 
origin of the flow relative to the position of the step or discontinuity. The virtual 
origin xo for a tripped mixing layer occurs upstream of the step or discontinuity 
while that for an untripped flow occurs predominantly either at  the step or 
downstream from it. The actual value of xo depends on the thickness of the 
initial boundary layer and the nature of the disturbances present in the boundary 
layer (Bradshaw 1966; Batt et al. 1970). The fourth column gives the slope of the 
locus of points at which the velocity is equal to half the free-stream velocity, 
i.e. the 7 = 0 line. These data could be representative of the spread of the mixing 
layer if it were not so sensitive to the angle between the flow direction and the 
alignment of the splitter plate upstream of the discontinuity. The relatively large 
values of ( ~ 0 . 5 -  yplate)/(x-x0) which were observed by Batt et al. (1970) can be 
attributed to a 1" flow angularity in their apparatus.? In  general 

for untripped mixing layers and 

for disturbed or tripped mixing layers. The most sensible measure of the growth 
of the mixing layer is the local width of the flow - y,,.lo)/(x - xo) because it 
is independent of most extraneous parameters. It was shown by Batt et al. 
(1970) that placing a trip wire upstream of the discontinuity altered the value 

t Private communication from R. G. Batt. 
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of (y095-y010)/(x-x0) from 0.17 to 0.22; the former number is in agreement 
with the observations of Liepmann & Laufer (1947) while the latter agrees with 
the tripped data reported by Wygnanski & Fiedler (1970). In  the present investi- 
gation an intermediate spreading angle was observed, perhaps because of the 
disturbance which was imposed on the boundary layer just upstream of the 
step. The present data are in agreement with the results of Patel (1973) and of 
Spencer & Jones (1971), although in the latter case the agreement may be 
fortuitous since the value of yo.95 - yW1 was derived by assuming that the velocity 
profile is well represented by an error function. Patel (1973) did not describe 
the state of the initial boundary layer on the splitter plate for his experiment. 
However the initial boundary layer in Patel's blower cascade wind tunnel was 
studied by Wygnanski & Gartshore (1963), who found that the boundary layer 
was undergoing transition. Thus Patel's initial conditions were somewhat 
similar to those in the present experiment, a disturbed but not fully turbulent 
state. The mean velocity profile is given in figure 2 and is in agreement with all 
previous investigations provided one chooses the appropriate spreading para- 
meters. The intermittency distribution y, which is also shown in figure 2, was 
measured previously (Wygnanski & Fiedler 1970) for U, = 12 m/s. This dis- 
tribution is shown merely to give a rough idea of the intermittency at  any 
position in the flow. 

The distributions of the longitudinal turbulence intensity at  three down- 
stream locations is shown in figure 4. These results indicate that the .ii distribu- 
tions are self-preserving beyond x = 39.5 cm, or correspondingly Re, M 2.2 x lo5, 
which is somewhat lower than the corresponding values reported by Liepmann & 
Laufer or Wygnanski & Fiedler. Also shown in figure 4 is the distribution of 
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-0.30 - 0.20 -0.10 0 +0.10 +0.20 

7 = (Y - Ygm)/(z - 4 
FIGURE 5. Comparison of longitudinal turbulence intensity distributions. 0, present ; 

-, Liepmann & Laufer; - - -, Wygnanski & Fiedler; - - , Patel. 

the lateral turbulence intensity 5 a t  x = 59.5 cm, which is the location a t  which 
all subsequently described measurements were carried out. In  view of the 
differences in spreading rate discussed above, it was felt that it might be instruc- 
tive to compare the turbulence intensity distributions obtained by Liepmann & 
Laufer, Wygnanski & Fiedler and Patel with the present results. Although 
other studies of the mixing layer have been recently carried out by Castro 
(1973) and Batt (1974), comparison will be made only with Wygnanski & 
Fiedler’s (1970) and Patel’s (1973) results, the latter as they represent the 
largest Reynolds number results available. The ii profiles are shown in figure 5 
and it is readily apparent that Liepmann & Laufer’s results are considerably 
lower in magnitude, either because of inadequate anemometer response or 
because of a lower initial disturbance level (Batt et at. 1970). The other profiles 
appear to collapse together on the high velocity side of the flow field, whereas 
for 7 > 0 the Wygnanski & Fiedler results appear to deviate from these distri- 
butions. It would appear from the iZ results that the increased spreading ob- 
served by Wygnanski & Fiedler occurs entirely on the low velocity side of their 
mixing layer. The 5 profiles shown in figure 6 indicate better agreement between 
the profiles on the low velocity side of the flow, although the degree of the 
agreement is less than that observed in the iZ profiles on the high velocity side. 
The present data agree with Patel’s results quite well while the Wygnanski & 
Fiedler data indicate higher intensities on the high velocity side. As the w 
statistics were measured at only four positions across the flow, the results for 
q2 = i(u2 + w 2  + w2), normalized by UL, are tabulated in table 2 along with the 

- - -  
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T Present results W & F  Patel 

- 0.113 0.0055 0.0112 0.0055 
-0.019 0.029 0.036 0.027 
+ 0.052 0.0165 0.0205 0.0145 
+ 0-097 0.0055 0.0094 0.0063 

0.15 I I I I 1 

0 I I I I 
-0.30 - 0.20 -0.10 0 0.10 0.20 

T = (Y-Y+lJ/(-%) 

-, Liepmann & Laufer ; - - - , Wygnanski & Fiedler; - - , Patel. 
FIGURE 6. Comparison of lateral turbulent intensity distributions. 0, present; 

corresponding values obtained by Wygnanski & Fiedler and Patel. Thus the 
present data are in general agreement with the highest Reynolds number data 
available, those of Patel (1973), innearly all respects. In  considering the Wygnan- 
ski & Fiedler (1970) results, one must keep in mind the Batt et al. (1970) study, 
where the a and 8 distributions for both a tripped and ‘partially’ tripped (i.e. 
their trip wire also did not trigger complete transition in the initial boundary 
layer) mixing layer were measured. They reported that their untripped case 
nearly reproduced the Liepmann & Laufer ii distribution, while their results 
for the partially tripped case are quite similar to the Wygnanski & Fiedler ii 
distribution (and nearly identical to the corresponding present distribution). 
Their mean velocity distributions indicated good agreement with Liepmann & 
Laufer’s for the untripped case, while for the tripped case they found agreement 
with Wygnanski & Fiedler’s results (see also table 1). Thus the difference in the 
distributions shown in figures 5 and 6 indicate real effects caused by the state of 
the initial boundary layer and can not be attributed to inadequacies in the 
measurement technique. Batt et al., therefore, showed that for the same Reynolds 
number, two different growth rates were possible depending on the initial 
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conditions. A reasonable speculation based on the above data is that the spread or 
width of the mixing layer as well as the magnitude of the peak in the intensity 
profile is proportional to the disturbance level of the initial boundary layer on 
the splitter plate (Bradshaw 1966). 

At this point one might rightfully ask whether there exist in the two-dimen- 
sional mixing layer universal self-preserving distributions of the mean velocity, 
turbulence intensities and other mean quantities not determined by viscous 
effects. According to the principle of Reynolds number similaritylindependence, 
these self-preserving distributions should be universal. 

In  reply, two alternatives seem plausible. One is that no universal self-preserv- 
ing form exists although each mixing layer in itself is self-preserving, the self- 
preserving functions being dependent on the initial conditions of the flow. Winant 
(1972) proposes a vortex-pairing model of the mixing layer developing from an 
undisturbed initial boundary layer and the model seems to fit his experimental 
observations. Vortex pairing implies a kind of orderly structure in the flow and 
perhaps this model is applicable to the untripped mixing layer of Liepmann & 
Laufer. A reasonable conjecture would be that if the initial boundary layer is 
highly disturbed or even turbulent the orderly vortex-pairing process might 
occur randomly, in some intermittent fashion or not at  all. Then this pairing 
process would not govern the growth of the mixing layer and a different growth 
rate would undoubtedly be observed. In  other words, one mighk expect that the 
instability problem and subsequent flow development could be different for an 
initially laminar mixing layer and for an initially turbulent mixing layer. In  
any case, the initial state of the boundary layer plays a strong role in the develop- 
ment of the flow, perhaps through the modification of some orderly process like 
that proposed by Winant. It was also noted that the initial mixing layer of an axi- 
symmetric jet was affected by disturbances introduced in the exit flow (Crow & 
Champagne 1971). For example, the frequency of the disturbance has a strong 
effect on the growth of the mixing layer. 

The second alternative is that it  is not the initial conditions which are so 
important, but rather the boundary conditions. This alternative has been sug- 
gested by Laufer & Browand (private communication). They are concerned 
primarily with the boundary conditions imposed by the end plates. Browand 
has experimentally observed that if the ratio of the spatial distance between 
adjacent vortex structures to the distance between the end plates is of the order 
of 2 or larger, a strong inflow from the side-wall boundary layers into the core 
of the vortices occurs. As a result, the magnitudes of the fluctuations increase as 
well as the entrainment rate. They postulate that, as the initial shear-layer 
thickness is increased by the presence of a trip wire, the above condition is 
satisfied at an earlier stage of development of the mixing layer and may explain 
the Wygnanski & Fiedler and Batt et al. results. 

It is difficult to assess the validity of either alternative, although it should be 
pointed out that Pate1 used a 50 yo larger end-plate separation than was used in 
he present experiment sand the results agree quite well as shown previously. Until 

systematic experiments are carried out to investigate the importance of initial 
conditions and end-plate separation at high Reynolds number (i.e. Re, M lo6), 
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FIGURE 7. Measured probability density distributions of u and au/at at 7 = - 0.019. 
0, u ;  - - -, &/at; -, normalized Gaussian. 

there is no definitive basis for an answer. It is hoped that the information and 
discussion presented here will prove valuable in designing new experimental 
studies. 

3.2. Probability densities and higher-order moments 

Measurements of the probability densities and moments to eighth order were 
carried out for all three components of the velocity fluctuations at  various 
transverse positions across the flow at x = 59.5 cm. Similar measurements of 
the fist  derivative of the longitudinal component were made but moments to 
only fifth order could be reliably determined as will be discussed below. 

Figure 7 shows the measured probability density distribution of the u signal 
and its derivative taken at 7 = -0.019, which is approximately the centre of 
the u distribution. The random variables in all probability density plots have 
been normalized by their variance. The probability density shown in all plots 
is the normalized density defined by 

P( t )  = =*(a), . 
where [ = a/ii for the random variable a. In the centre of the mixing layer, where 
the lateral mean strain rate is at a maximum, the probability density is nearly 
Gaussian, as is observed in homogeneous grid turbulence and on the centre-line 
of an axisymmetric jet (Kuo & Corrsin 1972), where the mean strain rate is zero. 
The u distribution is characterized by a skewness of - 0.04 and flatness factor 
of 2.6. The fist-derivative signal has a skewness and flatness factor of + 0.5 and 
10.4 respectively, while for the second derivative they are - 0.06 and 37. Thus 
the higher the derivative the more the probability density differs from the 
normal distribution. This was observed also by Kuo & Corrsin (1972), who showed 
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FIGURE 8. Measured probability density distributions pf u. 
0,1] = -0.092; 0 ,  71 = +0-143. 

further that the deviation from normality increased with increasing Reynolds 
number. The nature of the deviation for the derivative signals is a higher 
probability than the normal density for small amplitude values and features 
that characterize an intermittent signal at very large amplitudes. 

The measured u probability densities at approximately the two half-turbu- 
lence-intensity points are shown in figure 8. The probability density for the low 
velocity side exhibits a peak at a small negative amplitude, has a long tail at  
large positive amplitudes, and is characterized by a skewness of +1.7. The 
peak at small negative values of u is most likely caused by potential fluctuations, 
and the tail a t  large positive values by large turbulent bulges or eddies. This is 
consistent with visual observation of oscilloscope traces and figure 7 in Wygnanski 
& Piedler (1970). The density distribution for the high velocity side shows just 
the opposite behaviour, although its peak is not displaced from zero amplitude 
so much and its skewness is - 1.5. 

The measured v-component probability density distributions at the centre of 
the flow and the two half-intensity points are shown in figure 9. The distribution 
for the high velocity side shows a peak at small positive values of WIG, which can 
be attributed to the potential fluctuations, and a large tail for negative VIE, 
which is caused by the large amplitude negative fluctuations carried by the large 
eddies or turbulent bulges. This interpretation is consistent with the results 
shown in figures 41 and 42 in Wygnanski & Fiedler. The skewness of this distri- 
bution is - 1.1. Again the opposite behaviour is exhibited by the distribution on 
the low velocity side, whose skewness is + 1.1. In  the centre of the flow, the 
density is not quite Gaussian and has a skewness of - 0.08 and a flatness factor 
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t; = v p  
FIGURE 9. Measured probability density distributions of v. 0, 7 = -0.113; 

0,  7 = -0.019; m, 7 = +0*097; 7 , normalized Gaussian. 

of 2.6. The corresponding statistics for the derivative of the v signal a t  the same 
location are - 0.04 and 13.6. Note that the sign of the skewness of v is consistent 
with an outward growth of the mixing layer on both sides of the flow. Corrsin 
(1960) related the skewness of the probability density of v to  the lateral gradient 
of the v-component intensity for fully turbulent, non-intermittent flow. Although 
this model appears plausible in view of the present data, no detailed comparison 
was carried out because of the strong effect of intermittency on the v statistics. 

Figure 10 shows the w probability density distributions for the centre and two 
half-intensity points. The distribution is nearly Gaussian in the centre of the flow, 
as would be expected from the flow symmetry in x ,  and the skewness and flatness 
factors are -0.010 and 3.07, respectively. The distributions at  the two half- 
intensity points deviate considerably from a normal distribution and this can 
undoubtedly be attributed to intermittency effects. On the low velocity side of the 
flow the distribution has a skewness of + 0.27 and a flatness factor of 7-02 while the 
corresponding values for the high velocity side of the flow are - 0.20 and 12.1. The 
observed behaviour of the w distributions, as well as that of the u and v distribu- 
tions, agrees qualitatively with similar distributions measured by Spencer (1970) 
in a mixing layer between two streams with a velocity ratio r of 0.6. 

Table 3 presents the values of the various moments of the u, v, w, au/at, av/at 
and Pu/i3t2 signals measured at 7 = -0.019. These moments were computed 
directly from the time series and not by using the probability density distri- 
butions. Before presenting further results on the distributions of the higher- 
order moments across the flow, it is appropriate a t  this point to consider the 
magnitude of the mean relative error in the moment estimates for the integration 
timesused and possible effects of the chosen sampling frequencies on the estimates 
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FIGURE 10. Measured probability density distributions for w. 0, 7 = 0.019; 
0, 7 = 0.113; c], 7 = 0.097; - , normalized Gaussian. 

a 2 / 6 3  a4/ci4 a 5 / c i S  

u - 0.035 2.60 -0.16 
2) - 0.081 2.59 - 0.47 
W - 0.010 3.07 - 0.10 
aulat 0.50 10.4 21.2 
awlat -0.039 13.6 - 3.7 
aeulat2 - 0.06 3 7 4  127 

TABLE 3 

10.2 -0.27 52 
10.4 -0.03 67.4 
15.5 -1.03 107 

541 1633 8.3 x 104 
725 - 432 7.3 x 104 

1 . 4 ~  104 - - 

of the various moments. The distributions of the integrands of the moments of the 
signals, especially the derivative signals which have rather large kurtosis values, 
will be examined to ensure that the dynamic range of the processing circuits was 
adequate (Tennekes & Wyngaard 1972). Tennekes & Lumley (1972) showed that 
the mean-square relative error e2@) in the mean value E of a stationary random 
signal a determined by integration over a period of time T is given by 

~'(2) = ( [ a  - E(a)I2/[E(a)l2) 27/T, 

where E(a) is the expected value of the stationary random variable a and r is 
the integral time scale of a. 

Application of (1) to the determination of the variance c2, the skewness S or 
M3, and the fourth moment M4 or K gives 

(2) 

e2(c2) = ( K -  1) 27,/T, 

e2(8c3) = (&f6/S2 - 1) 2T3/T, 

@(Kc*) = (M8/K2 - 1) 274/T, 
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where r,, is the integral time scale of the nth moment. The formulation (1) is use- 
ful a priori only if reasonable estimates of high-order moments and integral 
time scales are available. The integral time scale of a stationary random function 
is defined to be the integral of the autocorrelation coefficient: 

where r,(t) is a stationary random function with zero mean. For the case n = 1, 
~ ~ ( t )  = a@), while in general rn(t) E an(t) -z. The integral scale can be inferred 
from the value of the spectrum function En(@) evaluated at zero frequency, 
where En(@) is defined as 

Rn(7) cos (wr )  d7. (4) 
- -  

Thus, for w = 0, 

Values of r, can therefore be estimated from the spectrum of an providing ade- 
quate low frequency spectral data are available (see Comte-Bellot & Corrsin 
1971). The observed spectra, to be presented iater, became reasonably flat as 
w+ 0 and the limit was evaluated by extrapolating the data to zero frequency. 
It is assumed that this provides reasonably representative values of the integral 
scales. The values so obtained for the u signal are r1 = 8.6 x 
r3 = 5.3 x 10-3 and r4 = 2.9 x 10-3 s. The integral scales of the powers of u(t) are 
of the same order of magnitude as that for u(t) itself. This result is not surprising 
as the velocity signal is reasonably Gaussian (Lumley & Panofsky 1964). Using 
these estimates, the values of the moments from table 3 and equations (2), one 
obtains 

r2 = 4.9 x 

s2(a2) = 1.57 x 10-2/T, gz(S$)  = 8.76 x 101/T, s2(Ka4) = 3.86 x 10-'/T. (6) 

The predicted integration times to obtain the moments with 6 yo accuracy are 
therefore 6 s  for the variance, 3 . 5 ~  104s for the skewness, and 15 s for the 
flatness factor. The even-order moments converge quite rapidly relative to the 
odd-order moments and this was borne out experimentally. The even-order 
moments to eighth order would converge to within 5 %  of their final values 
within roughly 1037,. The relatively smaller in magnitude odd-order moments 
converged very slowly and tended to exhibit a trend behaviour where the values 
changed a little in the same direction with each additional ensemble for several 
ensembles, making it difficult to determine when statistical convergence was 
achieved. Some indication of this behaviour is shown in table 4, which presents 
moment values obtained with different sampling intervals and for several inte- 
gration times with fixed sampling frequency. The data were obtained for the u(t) 
signal at  7 = - 0.01 9 and the signal was low-pass filtered at twice Kolmogorov's 
frequenoy for all runs. The sampling interval is At, N is the total number of 
samples and T = NAt is the total sampling period. The first three rows give the 
moment estimates for three different sampling intervals for a fixed total sampling 

I5 FLM 74 
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6-64 x 10-4 

1.66 x 10-3 

6.64 x 10-4 

1.663 x 10-3 

1.663 x 1 0 9  

N 
(T, min) 

1-8 x 108 
(1.7) 

1.5 x 105 
(1.7) 

6.0 x 104 
(1.7) 

2.7 x 108 
(30) 

1.08 x 106 
(30) 

3-0 x 108 
(83) 

-0.010 2.63 +0*01 10.5 +0*69 53.8 

-0.022 2.63 -0-06 10.4 -0.27 53.3 

-0.027 2.60 -0.10 10.3 +0.17 52.6 

-0.035 2.60 -0.16 10.2 -0.27 52.1 

TABLE 4 

period of 1-7 min. The Kolmogorov time scale T~ is 1.3 x 10-4 s, so the sampling 
intervals covered the range from approximately $rK to nearly the integral scale 
values with no apparent effect on the even moments. The fourth and fdth rows 
give a comparison between two sampling rates at  T = 30 min. The last row shows 
the estimates after N = 3 x 10s samples at T = 83 min, and (6) predicts the variance 
to be determined to within k 0.2 %, the skewness to within +-13 Yo, and the flat- 
ness factor to within f 0.3 yo. As the running means of the moments were printed 
out with the on-line printer after each ensemble was processed, the convergence 
of the moment estimates was monitored, and the predictions from (6) are con- 
sistent with the observations. The sixth- and eighth-order moments were ob- 
served to converge to stable estimates to within f 0.3 yo while the fifth and 
seventh moments converged to  within f 15 Yo. As the sampling interval used 
has no effect on the h a 1  moment estimates, as is expected for stationary random 
signals, the optimum sampling interval is one that provides adjacent samples 
that are approximately independent of each other. Tennekes & Lumley (1972) 
show that this requires the sampling interval to be equal to or greater than twice 
the integral time scale. The largest At used in this test was 1.66 x s, which 
is less by a factor of four than the integral time scale of the basic signal u(t) and 
about half that of the u4(t) signal, so the adjacent samples were not quite 
independent. In  applying ( l ) ,  it  is tacitly assumed that the frequency and ampli- 
tude response of the processing circuits is adequate. This can be determined only 
a posteriori by analysis of spectral and moment integrand plots for the signals 
measured. The spectral plots will be considered subsequently. The distributions 
of the moment integrands for the u(t) signal are shown in figures 11 and 12. 
These distributions correspond to the moments presented in the last row of 
table 4 and first row of table 3 and are the results for N = 3 x lo6 samples. 
These figures clearly demonstrate that the dynamic range of the processing 
circuits ( k  5a this case) was adequate and the integrand estimates exhibit a 
high degree of statistical stability. 

As pointed out previously, the probability distributions show increasingly non- 
Gaussian behaviour away from the centre of the flow. Rather large values of 
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E = u p  
FIaum 12. Normalized moment integrand distributions for u(t) measured at  9 = -0.019. 

U, E'p(E); 0, 0.333 E4p(E); A, 0.080 E6p(E); +, 0.014 Pp(E). 

the higher-order moments are therefore encountered and more stringent dynamic- 
range requirements are imposed on the processing circuits. For comparison, 
figures 13 and 14 show the moment integrand distributions a t  7 = -0.113 for 
the u(t) signal, and the moment values are S = - 1.45, K = 8.4, M5 = - 33-0, 
M6 = 181, M, = - 984 and M, = 6 x lo3. The total sampling period is T = 25 min 
and N = 3 x lo6. The rather large excursions in the distributions at uli?. = - 8-9 
result from seventeen observations out of the total of 3 x lo6, so the statistical 
stability of this probability density estimate is questionable. The values of the 

15-2 
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-10 -8.0 -6.0 -4.0 -2.0 0 2.0 4.0 6.0 8.0 

6 = u p  
FIGURE 13. Normalized moment integrand distributions for u(t) measured at  7 = - 0.113. 

0, b ( E ) ;  0, 0.50 Eap(E); A, 3 x lo-* c 6 p ( f ;  +, E7p(E). 

5 = u p  

FIGURE 14. Normalized moment integrand distributions for u(t) measured at  7 = - 0.113. 
0, k?P(E); 0, 0.15 E4p(5); A, 5 x lo-' E;'p(E); +, 1.5 x lo-' l * p ( f ) .  

seventh- and eighth-order moments for larger values of 171 than 0.12 should be 
considered as order-of-magnitude estimates only. 

Similar considerations to those described above must be applied to the deriva- 
tive signals and emphasis will be placed on the statistics of au/at a t  7 = - 0.019, 
which are presented in table 3. Application of (1) to  the derivat'ive signal is 
complicated by the fact that the integral scale of the fundamental signal &/at 
is zero as the spectrum of the derivative vanishes a t  the origin o = 0. The integral 
scales of powers of the derivative signal are non-zero as their power spectra 
exhibit maxima at  the origin (Lumley 1970; Friehe, Van Atta & Gibson 1971). 
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FIGURE 15. Distribution of normalized integrand for first moment of measured probability 

density of &/at. 71 = - 0.019. 0, circuit A ;  0, circuit B. 

Assuming that the integral scale of the (au/at? signal is representative of the 
time interval over which au/at is dependent on itself, we shall use it in estimating 
the mean-square relative error in both the variance and the flatness factor. 
Even though the derivative signal is quite non-Gaussian, this substitution should 
give an order-of-magnitude estimate, which is all we are after in any case. The 
integral time scales determined from the spectra of (au/at)2 and ( a ~ l a t ) ~  give 
7; = 5.6 x s respectively. Tennekes & Wyngaard (1972) 
considered that a conservative estimate of 7;; was ioqK/g on the basis of results 
obtained by Wyngaard & Pao (1972) and Friehe et al. (1971). From the present 
results, ioqK/u = 2-5 x s so it would appear that a better estimate in the 
present case would be 20TK/g. The moment estimates for &/at shown in table 
3 were obtained using a sampling interval of s, about 2 4 ,  for a total sampling 
period of 46 minutes and N = 2.8 x 106 samples. The second- and fourth-order 
moments converged to within f 5 yo of their asymptoticvalues in about 2 x lo5 T;, 
whereas the third, fifth and sixth moments required roughly 3 x 1O67L. The 
seventh moment did not settle down to within a f 5 yo band over the entire run, 
but appeared to reach a f 10 % convergence in about 5 x 10672. It is difficult to 
assign any level of convergence to the eighth moment as it exhibited a trend 
behaviour and could vary by as much as a factor of 2 during such trends. Appli- 
cation of (2) for the total sampling period indicates that the variance of &/at 
is determined to within & 0.2 %, the skewness to within f 0.7 % and the flatness 
factor to within & 1.6y0. Again we shall consider the dynamic-range require- 
ments by presenting the distributions of the moment integrands for aulat, shown 
in figures 15-22. Results from two different runs are shown, as one run was made 
with each of two different differentiation circuits. The total number of samples 
processed by circuit A was 2-8 x 106 and the signal-to-noise ratio SIN and the 

s and 7; = 4 x 
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4.0 8-0 12.0 16.0 

FIGURE 16. Distribution of normalized integrand for second moment of measured 
probability density of au/at. 11 = - 0.019. 0, circuit A ; 0, circuit B. 

FIGURE 17. Distribution of normalized integrand for third moment of measured probability 
density of au/at. 7 = - 0.019. 0, circuit A ; 0, circuit B. 

dynamic range for the overall circuit were 6 and & 1 9 ~ .  The reason for using 
this circuit will be discussed in a subsequent section. For circuit B, the values 
were N = 1.3 x 106, SIN = 20 and & 2 0 ~ ;  this is the circuit previously described 
and used in all other derivative measurements. Within the scatter band pre- 
viously presented, both circuits gave identical results. The integrands of the 
first, second and third moments converge nicely within the available dynamic 
range of the circuits and exhibit very little scatter. The scatter in the large 
amplitude estimates of the higher-order moment integrands, say starting with 
the fourth, may be due to the lack of statistical stability of the probability density 
estimates or the occurrence of spurious data samples at  large amplitude. The 
latter problem may be caused by extraneous signal pick-up, large fluctuations in 
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-16-0 -12.0 -8.0 -4.0 0 4.0 8.0 12.0 16.0 

FIGURE 18. Distribution of 0.25 C4p(5) measured at 7 = -0.019. 
0, circuit A ; o1 circuit B. 

FIGURE 19. Distribution of 6 x Csp(C) measured at 7 = - 0.019. 
0, circuit A ; 0, circuit B. 

power-supply voltages, or possibly even some contaminant particle hitting the 
hot wire. A lack of statistical stability is undoubtedly the most reasonable ex- 
planation as typically less than 10 observations out of the total sample popula- 
tions provide the probability density estimate for amplitudes greater than k 10. 
Curves were faired through the integrand distributions up to that for the sixth 
moment. The fourth moment integrand closes adequately to determine the value 
of the moment with reasonable accuracy. The integrand for the fifth moment 
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FIGTJRE 20. Distribution of 5 x t 6 p ( t )  measured at 7 = - 0.019. 
0, circuit A ; 0, circuit B. 
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FIGURE 21. Distribution of E7p(5) measured at 7 = - 0.019. 
, circuit A ; 0, circuit B. 

does not close a8 nicely and i t  is difficult to assign any accuracy to the value of 
this moment as it is equal to the difference in area determined by the fairing 
procedure. As the principal contribution to the sixth-, seventh- and eighth-order 
moments occur at large amplitude values where the scatter makes it difficult to 
fair in the moment integrand, we can assign only an order-of-magnitude accuracy 
to the values of these moments. Evaluation of the higher-order moments away 
from the centre of the flow is even more difficult as their magnitude becomes 
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FIGURE 22. Distribution of 5 x 10-5 lap(5) measured at 7 = - 0.019. 
0, circuit A ; 0, circuit B. 
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EIGURE 23. Normalized moment integrand distributions for &/at measured at  7 = - 0.1 13. 
0, E”(6); 0, 6 x loa 5WE) .  

large, thereby imposing more stringent dynamic-range and integration time re- 
quirements. Figures 23 and 24 show the second, third, fourth and fifth moment 
integrand distributions for 7 = -0.113, where the values of the moments are 
S = - 0.66, K = 33, M5 = - 98, M, R 4 x lo3, M, w - 2 x lo4 and M8 fi: 1 x lo6, 
the last three values being strictly order-of-magnitude estimates. The spike-like 
peaks near zero amplitude occurring in the integrand of the first moment were 
missed because of the rather coarse window width (At = 0.818) used and thus 
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FIGURE 24. Normalized moment integrand distributions for &/at measured at  7 = - 0.1 13. 
0, 5Sp(5); 0, 1.5 x 5W5). 
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FIGURE 25. Normalized moment integrand distributions for &/at measured at  7 = - 0.1 13. 
0,  5 x 10-4 twt); 0, 10-6 twt). 

this integrand is not shown. The signal-to-noise ratio and dynamic range of the 
processing circuit were 8.3 and +_ 27v, respectively. The sampling interval used 
was 1-66 x sforN = 1.05 x 106totalsamplesandatotalperiodofT = 2 9 m h  
The third and fourth moment integrands require nearly a 22v dynamic range 
to  decrease adequately to  a level which allows reasonable determination of the 
corresponding moment. Thus, as the value of the kurtosis can become quite large 
in the intermittent region of laboratory turbulent flows, considerable care in the 



On the two-dimensional mixing region 235 

-0.20 -0.10 0 0.05 0.10 0.15 
-0.15 -0.05 

t 71 

FIUURE 26 FIGURE 27 

FIGWXE 26. The distributions of skewness factors. 0, u; 0, v; 0, w. 
FIGURE 27. The distribution of flatness factors. 0, u; 0, v; U, w; -, (ym&)m~~; 

- - -9 (Ymsr /Y)p .p .*  

processing of such signals is required, as in the case of fully turbulent, high 
Reynolds number atmospheric flow (Tennekes & Wyngaard 1972). The scatter 
in the integrand estimates for [ $1 > 20 can undoubtedly be explained by the 
lack of statistical stability of the probability density estimate as typically each 
estimate consisted of only one or two observations out of the N = 1-05 x lo6 
samples. The data are barely adequate to describe the fifth moment integrand 
and again it is difficult to estimate the numerical accuracy estimate of this odd- 
order moment. Figure 25 shows the sixth- and eighth-order integrands. On the 
basis of the above results for the velocity-derivative signals, we decided to 
present the distributions of the moments up to fifth order of the derivative signals 
across the flow field, with the latter values considered a8 order-of-magnitude 
estimates only. 

The distributions of the higher-order moments of u, v, and 20 to seventh order 
across the flow are shown in figures 26-30. The skewness and flatness-factor dis- 
tributions agree quite well with the results of W & F, especially for the u- 
component fluctuations. A comparison of W & p’s intermittency results with 
that computed from the flatness factor is also shown in figure 27. 

The skewness of the &/at signal shown in figure 31 differs from the results of 
W & F on the high velocity side of the flow. The present data indicate a positive 
skewness increasing in magnitude while the W & F data show a negative skew- 
ness increasing in magnitude as the inner edge of the flow is approached. Also 
shown in figure 31 is the distribution of the fifth moment of the derivative signal 
while that for the fourth moment is shown in figure 32. 
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FIUURE 28. The distribution of fifth moments. 0, U ;  0 , v ;  0, w. 

FIQURE 29. The distribution of sixth moments. 0, u; 0, V ;  0, W. 
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FIQURE 30. Seventh moment distributions. 0, u; 0, v ;  a, W .  

3.3. One-dimensional energy spectra and local isotropy 

The one-dimensional energy spectra Fl(kl), F2(kl) and F3(kl), whose integrals are 
~ 2 , 2 1 2  and 2, are presented in figure 33 for 9 = - 0.019. Taylor’s approximation 
in the form k, = 2nf/a was used to transform frequency f to wavenumber k,, 
the x component. The magnitude of kK = qgl is shown, where rK = (v3/e)&, the 
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FIGURE 33. One-dimensional energy spectra measured at 71 = - 0.019. 
0, E;(ki); 0 9  p2(W; A, 4(k)* 

Kolmogorov length scale. The value of the dissipation rate E: was estimated from 
( a ~ / a t ) ~  using Taylor’s hypothesis and assuming local isotropy in the form 
8 = 15~(8zc/ax)~. The spectral equivalent of the hot-wire sensiiig-element length 
1, is also indicated. The u spectrum was obtained from a single wire normal to 
the flow, while the v and w spectra were obtained from X-wires. For both single 
and X-wires, r,i/Z, = 0-26. Wyngaard (1969) has shown that, if 8 90% response 
to (&/ax)2 is required, then wires no longer than 47 can be used in the measure- 
ment. The estimate of (au/ax)2 is therefore essentially unaffected by wire-length 
attenuation, whereas the actual estimates of the spectral values at wavenumbers 
greater than 1 ~ 1  become increasingly attenuated until a t  k, = kK the predicted 
attenuation is about 30 yo (Wyngaard 1968). For wavenumbers less than 2i1, the 
attenuation can be neglected and the measured spectral values should be good 
estimates of the true spectra. No wire-length corrections were applied to the data. 

On the log-log plot shown in figure 33, there appears to be over a decade and 
a half of a spectral inertial subrange with a - 4 power law behaviour, although 
the turbulence Reynolds number is only 330. The turbulence Reynolds number 
RA is defined as 

where A, is the lateral Taylor microscale and was estimated from E: and .iz accord- 
ing to  (Hinze 1959) 

R, = GAg/v, (7)  

E = 15Ez/Ai. (8) 
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FIGURE 34. One-dimensional Kolmogorov inertial-subrange constant 218. normalized 
wavenumber. 

The value of R,, is probably not large enough to expect local isotropy in the 
inertial range of the spectrum as the dissipative region may not be separated 
sufficiently from the production region (Corrsin 1957). The form of the P!(k,) 
spectrum in the wavenumber region of the apparent inertial subrange can be 
examined more closely by plotting the function k!F,(k,) us. k, on a linear-log 
plot. An equivalent plot is that of a, vs. v K k 1 ,  where a, is the one-dimensional 
Kolmogorov inertial-subrange constant defined by 

@1(7&1) = %(7Kkl)% (9) 

where @,(qKkkl) = q ( k l )  (hf) is the Kolmogorov normalized spectral function. 
Such a plot is shown in figure 34. Out of the 4096 total spectral estimates avail- 
able, the computer was programmed to print out 250 to give a reasonably uni- 
form coverage of the entire frequency/wavenumber range. The scatter band for 
the spectral points was estimated to be & 5 yo from intermediate computer 
print-outs. Within this scatter band, one might conjecture that an inertial sub- 
range exists in the range 3-5 x with a universal constant 
of a, = 0.46. However a necessary requirement for local isotropy is that the 
inertial spectral region be a t  wavenumbers much larger than those a t  which 
turbulent energy production occurs, and the latter were shown by Corrsin (1958) 
to be 

For 7 = - 0.019, 7=kP x 8 x 10". Therefore, as most of the production occurs 
in the wavenumber region of interest, the inertial-subrange conjecture must be 
rejected. Further, the F2(k1) and F3(kl) spectra are leas than F,(k,) through this 

c qKkl < 2 x 

kp  M v"-laulay. (10) 
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wavenumber region, which contradicts the locally isotropic inertial-subrange 
relation F2(kl) = F3(kl) = $Fl(k1). A disturbing feature of the a, plot is the evi- 
dent increase in the value of a, with increasing rE k, in the wavenumber region 
2 x < q E k ,  < 6 x 10-2. This would indicate a decrease in the slope of the 
spectrum between the apparent inertial subrange and the viscous subrange and 
thus provides further evidence against the existence of a locally isotropic inertial 
subrange in the present spectra. We must conclude that the apparent existence 
of a Kolmogorov -Q law in u-component spectra, even with proper universal 
constant magnitude, is a relatively insensitive indicator of local isotropy 
(Bradshaw 1967; Champagne, Harris & Corrsin 1970). Dissipative local isotropy 
requires at least k, % kp and for 7 = - 0.019, kE/kp x 125, which would seem 
sufficient. As the wire-length attenuation effects come into play over much of 
the dissipative region, no attempt was made to determine whether the isotropic 
relation 

FXkJ = F(k1)  = B[F,(k,) - kl (a~l /akl ) l  (11) 

was valid in this wavenumber region. However, the isotropic form relating the 
streamwise derivatives, 

(au/ax)2 = &( av/ax)2, (12) 

was found not to hold as the ratio of measured squared derivatives was not 4, 
but 0-87. 

The second moment of the Kolmogorov normalized spectrum @,(yk,), which 
is constrained to have the isotropic property 

is shown in figure 35. This spectrum has a peak value of approximately 0.23 at 
qKkl x 0.10, which agrees well with other laboratory results for R, in the range 
100-300 (Wyngaard & Pao 1972). No corrections to the spectra for effects caused 
by deviation from Taylor’s hypothesis (Lumley 1965) were carried out. The 
fourth moment is shown in figure 36. Also shown in figures 35 and 36 are the 
second and fourth moments obtained with a hot wire whose sensing-element 
length I ,  is equal to  127. The latter spectrum was normalized with the 8 value 
obtained with the smaller wire (Zw E 47) to show the attenuation properly. These 
data were obtained to confirm the attenuation calculations of Wyngaard (1968) 
and good agreement was obtained. These results, however, provide only a check 
on the relative attenuation between two wires whose lengths are both greater 
than Kolmogorov’s microscale, rather than a check on the absolute attenuation, 
which requires that one of the spectra be measured with a hot wire whose length 
is equal to  or less than q9. 

Finally, the spectra of the streamwise velocity fluctuations at  the flow centre 
and the two half-intensity points are shown in figure 37. The spectra are plotted 
in the form Fl(f) normalized by the local variance of the fluctuations vs. frequency 
to determine whether the low frequency regions exhibit rather narrow spectral 
peaks as observed by Spencer (1970) in his large shear case, r = 0.6. He measured 
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u-component spectra at the flow centre and a t  the position where y M 0.4 on 
each side of the mixing layer. The latter two spectra contained narrow peaks at 
nearly the same frequency, while for the centre of the flow a rather weak peak at 
a lower frequency was observed. Similar behaviour is not evident in the present 
flow, as figure 37 shows. 

16 FLM '14 
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FIGURE 37. One-dimensional energy spectra measured at three transverse positions. 
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3.4. Higher-order spectra 
The first or variance spectrum and the higher-order spectra of the longitudinal 
velocity fluctuations are defined as 

which is similar to the definition presented in 3 3.2 with application of Taylor’s 
hypothesis to convert frequency to wavenumber. According to the original 
Kolmogorov theory (1941) the first-order spectrum should take the universal 

(15) 
form 

when normalized by E and Y (for sufficiently large RA). Let us consider the case 

@l(TKkl) = E ; ( k l ) / ( W  

n = 2 :  
2- (u”)2 = jom 2F1(k1) dk,. 

If one assumes that Kolmogorov’s universal equilibrium theory applies to the 
statistic 2F1(kl), then the motion in the equilibrium range of wavenumbers is 
uniquely determined by B and Y and the second-order spectrum takes the uni- 
versal form 
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If one goes one step further and assumes that equivalent inertial subranges exist 
for these higher-order spectra then it can be shown that 

again for sufficiently large RA. Figure 38 shows ,&(k1) normalized by s- (u")2 
08. wavenumber for n = 1 , 2 , 3  and 4. Although we have shown that an inertial 
subrange does not exist for the first-order spectra in this %ow, one might at least 
expect qualitative agreement with the spectral forms, but this is not the case. 
The observed spectral behaviour indicates that the spectra get less steep with 
increasing order in the wavenumber range where the first-order spectrum approxi- 
mately follows the -# law. It can be shown that for Gaussian noise with a 
Gaussian autocorrelation function the second-order spectrum is less steep than 
the first-order spectrum (Corrsin, private communication). 

16-2 
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The authors are indebted to Dr J. Lumley for pointing out that if one evaluates 

a4{(uyt) - 2) ( U y t  +7) - P ) } / a 7 4 ,  

terms such as ( a u ( t ) / a ~ ) ~  (au(t + ~ ) / 8 7 ) ~  are obtained which contribute to the 
spectrum of the dissipation fluctuations. This implies that the higher-wave- 
number components of these higher-order spectra must be influenced by the 
same (he-scale) intermittency or variability as affects the dissipation fluctua- 
tion spectra, and hence cannot follow Kolmogorov scaling. 

Yaglom (1966), using the assumptions in Kolmogorov’s (1962) refined hypo- 
thesis, predicted that the one-dimensional spectrum of the dissipation fluctua- 
tions should be of the form 

EE6 - &-l+p, (19) 

where ,u is a universal constant. This constant appears in Kolmogorov’s formu- 
lation for the variance of the logarithm of the viscous dissipation rate E,  averaged 
over a volume of dimension r3 as a function of r, given by 

o&, = A(z , t )  +,uln(Lo/r) (Lo > r %- 71, (20) 

where Lo is the energy scale of the turbulence and A is a function of the large- 
scale features of the flow field. As at present no technique is available for measur- 
ing dissipation fluctuations, the instantaneous rate of dissipation iiJ assumed to 
be proportional to (a~/ax)~, and therefore the spectrum of ( a ~ / a z ) ~  is assumed 
proportional to k ~ l + p .  The problem of representing the instantaneous dissipation 
rate by is discussed by Gibson & Masiello (1972) and values of ,u obtained 
in this way are reviewed by Gibson et al. (1970). The squared-first-derivative 
spectra for the u and 9 signals at 7 = - 0.019 are shown in figure 39. The spectra 
exhibit approximate power-law behaviour as shown for wavenumbers less than 
that corresponding to the peak in the dissipation spectrum, i.e. 10 cm-l, and 
greater than 0.01 cm-I. This is the same wavenumber range as that in which 
the apparent inertial subrange in the Fl(k,) spectrum exists. The lines representing 
the power-law fit to  the ( t 3 ~ / a t ) ~  and ( a ~ / a t ) ~  spectra have slopes of -0.57 and 
- 0-49, respectively. The lognormal constants are therefore 0.43 and 0.51, 
respectively, although the Reynolds number of the turbulence may not be 
sufficiently large to  expect the kcl+p form to  apply. In  any case, the power-law 
behaviour should be expected to  apply only in the inertial-subrange wavenumber 
region because of the requirements on r in (20). If one tried to force the power- 
law fit into the dissipation wavenumber region a smaller slope would result 
because of the existence of a spectral bump in this wavenumber region. The 
spectral bump is evident not only in the present data, but also in those of Stewart, 
Wilson & Burling (1970), Friehe et al. (1971) and Wyngaard & Pao (1972). The 
lognormal constant inferred from the ( a ~ / a t ) ~  spectrum is different from that 
inferred from the ( a ~ / a t ) ~  spectrum and, as the present flow is not locally isotropic, 
it  is difficult to speculate which signal is more representative of the dissipation 
rate. The reason for the difference is as yet unexplained, although possibly the 
deviations in the response of a single wire caused by large amplitude fluctuations 
and large fluctuations in convection velocity (Lumley 1965) are different from 
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FIGURE 39. Squared-velocity-derivative spectra. 71 = - 0.019. 
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those for an X-wire, thereby causing different effects on the (8u/8t)a and 
spectral shapes. 

For all the higher-order spectra, the area under each spectral curve provided 
a value for a2n - (an)2, where a(t)  is the random signal, which can be compared 
with the results from the measured moment values. For example, let n = 2 
and a = u(t);  then the area under the second-order spectrum is equal to 2- (G)2, 
or ( K -  1) (u2)2. As the flatness factor and mean-square value are available from 
the moment measurements, an independent check on the higher-order moments 
was possible. Typically, the measured spectral area was within 5 5 yo of that 
predicted from the moment measurements. Also, as the turbulence is stationary, 
(4) shows that the second-order spectrum can be considered representative of 
the spectrum of the flatness factor. Similarly, the third- and fourth-order spectra 
can be considered representative of the sixth- and eighth-order moments, re- 
spectively. Thus the higher-order spectra can be used to determine whether the 
frequency range of the processing circuits was adequate, which was the case 
here in view of the agreement of the spectral-area calculations. 

- -  

3.5. Lognormality of spared-derivative Jluctuations 
Gurvich & Yaglom (1967) extended Yaglom's (1966) hypotheses for E, to include 
any local non-negative characteristics of the small-scale turbulence, such as the 
dissipation rate itself or squared derivatives of the velocity fluctuations. Cumu- 
lative distribution functions of the logarithm of (au/at)z, (8v/8t)2 and ( a2u2/8t2) 
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FIUURE 40. Probability distribution of logarithm of squared velocity derivative. 
= - 0-019. 0, run 2 x 1  ; 0, run LN2.  

were determined a t  the centre of the flow, 7 = - 0.019. The calculation of the 
distribution functions was performed by k s t  determining the histogram of the 
squared-derivative samples and then transforming to the histogram of the 
logarithm via the appropriate identity. 

obtained from two different differentiator circuits. The data labelled run LN1 
will be considered first. The derivative’s square is normalized by the derivative’s 
variance. As pointed out previously, care was taken to avoid phase shifts and 
amplitude distortion of the derivative signal wave forms. The phase shift of 
the differentiator circuits was quite linear with frequency over the band of 
interest and the overall signal-to-noise ratio for the circuit used in run LNl 
(and LN3), circuit B, was 20: 1 , or 20 dB. The lognormal distribution represented 
by the solid straight line has a mean and standard deviation (slope) determined 
from the measured kurtosis of the derivative and in general does not fit the 
measured distribution function very well. Improvement in the fit through the 
large amplitude range, excluding the extreme values, is obtained if the line is 
shifted slightly to the right. Then the line would be tangential to the measured 
distribution over a limited range and fall below it in the range of the largest 
amplitude values, in agreement with the results of Gibson & Masiello (1972) 

Figure 40 shows a probability plot of the distribution functions of 
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FIUURE 41. Probability distribution of logarithm of squared transverse velocity derivative. 
7 = -0.019. 

for their unaveraged data. The deviation a t  the small amplitude values was 
attributed to noise by Gibson et al. (1970). Stewart et al. (1970) and Wyngaard 
& Tennekes (1970), however, concluded that noise was not the case for the 
observed characteristic curvature at small values based on computer simulation 
of lognormal signals containing Gaussian noise. Gibson & Masiello (1972) 
showed that filtering out noise did not remove the curvature. Further evidence 
indicating that circuit noise is not the cause of the deviation is provided by the 
data labelled run LN2. These data were obtained with a differentiator circuit, 
circuit A ,  similar to the one used in run LN1 but with the signal-to-noise ratio 
lowered to 6. This was achieved by removing one filter and increasing the low- 
pass setting of the remaining filter from a frequency equivalent to twice Kolmo- 
gorov's frequency, fK = U/27ryK, to 2'7fK. The measured flatness factors ob- 
tained with the two circuits agreed to within 5% while the skewness factors 
were within 2 yo. As these deviations are within the statistical uncertainty dis- 
cussed earlier, the result of the filter modification was to  add about three times 
the amount of noise while not distorting the basic derivative signal. Note that 
there is no significant difference between the two sets of data for the range of 
small amplitudes where the deviation from the straight line occurs. Gibson & 
Masiello (1973) indicate that the reason for this deviation could be that 
may not be representative of the local value of the dissipation rate 8 when 
the value of (au/at)2 is relatively small. In  fact they conclude that their 
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FIQURE 42. Probability distribution of logarithm of squared second derivative of velocity. 
9 = -0.019. 

measurements of averaged values of er - (a~/2t,)~aro consistent with lognormality 
only under the assumption that the extreme values of the squared derivative 
are representative of er. 

The cumulative distribution function for the logarithm of ( 8 ~ / 2 t ) ~  is shown in 
figure 41 and the results are quite similar to those for the 2ulat signal. The log- 
normality of the second-derivative signal a2u/at2 is shown in figure 42. The solid 
straight line was again calculated from the flatness factor of the basic signal. 
The dashed straight line is faired to the large amplitude data and the fit is 
quite reasonable down to about 60 yo, where the characteristic small amplitude 
curvature begins. The square of the second derivative shows less departure 
from lognormality than the square of the first derivative, and this agrees with 
the results obtained by Kuo (1970) for both low Reynolds number (Rh = 72) 
grid flow and on the axis of an axisymmetric jet with R, = 830. 

The authors are indebted to S. Hansen, who developed all the programs for 
use with the on-line digital data acquisition system, and F. Lange, who provided 
valuable assistance in constructing and modifying the laboratory equipment. 
The first author, F. H. C., is grateful to Dr C. H. Gibson, Dr C. A. Friehe, Dr J. C. 
La Rue and Dr C. Winant for reviewing the manuscript and many helpful 
suggestions. Also we thank Dr C. H. Gibson for providing funds to support com- 
puter preparation of many of the figures using the computer graphics system 
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REFERENCES 

BATT, R. G. 1974 T R W  TR Rep. no. 18117-6023. (See also SAMSO TR no. 74-62.) 
BATT, R. G., KUBOTA, T. & LAUFER, J. 1970 A.I.A.A. Reacting Turbulent Flows Conf., 

San Diego. 
BLACKMAN, R. B. & TUKEY, J. W. 1958 The Measurement of Power Spectra. Dover. 
BRADSHAW, P. 1966 J. Fluid Mech. 26, 225. 
BRADSHAW, P. 1967 Nat. Phys. Lab. Aero Rep. no. 1220. 
BROWN, G. & ROSHKO, A. 1971 AGARD Fluid Dyn. Pam1 Specialists Meeting on Turb. 

CASTRO, I. P. 1973 Ph.D. thesis, Department of Aeronautics, Imperial College, London. 
CHAMPAGNE, F. H., HARRIS, V. G. & CORRSIN, S. 1970 J. Fluid Mech. 41, 81. 
CHAMPAGNE, F. H., SLEICHER, C. A. & WEHRMANN, 0. 1967 J. Fluid Mech. 28, 153. 
COMTE-BELLOT, G. & CORRSIN, S. 1971 J. Fluid Mech. 48, 273. 
COOLEY, J. W., LEWIS, P. A. W. & WELCH, P. D. 1967 I B M  Watson Rea. Center, York- 

t o m  Heights, New York, Paper, RC-1743. 
CORRSIN, S.  1950 J. AeroSci.. 17, 396. 
CORRSIN, S. 1957 Proc. 1st Naval Hydro-Symp., Nat. A d .  Sci.lNat. Res. Couw. publ. 

CORRSIN, S. 1958 N.A.C.A. Res. Memo. RM 58B11.- 
CROW, S. & CHAMPAGNE, F. H. 1971 J. Fluid Mech. 48, 547. 
FRENKIEL, F. N. & KLEBANOFF, P. S. 1971 J .  Fluid Mech. 48, 183. 
FRIEHE, C. A., VAN ATTA, C. W. & GIBSON, C. H. 1971 AGARD Conf. Proc. no. 93, paper 

GIBSON, C. H. & MASIELLO, P. 1972 Proc. Symp. on Stratified Models and Turbulence, Lec- 

GIBSON, C. H., STEGEN, G. R. & WILLIAMS, R. B .  1970 J .  Fluid Mech. 41, 153. 
GURVICH, A. 8. & YAGLOM, A. M. 1967 Phys. Fluids Suppl. 10, S69. 
HINZE, J. 0. 1959 Turbulence. McGraw-Hill. 
KOLMOGOROV, A. N. 1941 Dokl. Akad. Nauk. S S R  30, 301. 
KOLMOGOROV, A. N. 1962 J. Fluid Mech. 13, 82. 
Kuo, A. 1970 Ph.D. thesis, Department of Mechanics, Johns Hopkins University. 
Kuo, A. & CORRSIN, S. 1972 J. Fluid Mech. 56, 447. 
LIEPMAN, H. W. & LAUFER, J. 1947 N.A.C.A. Tech. Note, no. 1257. 
LUMLEY, J. L. 1965 Phys. Fluids, 8, 1056. 
LUMLEY, J. L. 1970 Stochastic Tools in Turbulence. Academic. 
LUMLEY, J .  L. & PANOFSKY, H. 1964 Structure of Atmospheric Turbulence. Interscience. 
OBOUKHOV, A. M. 1962 J. Fluid Mech. 13, 77. 
PAO, Y. H., HANSEN, S. & MACGREGOR, G. 1969 Boeing Sci. Res. Lab. Doc. D1-82-0863. 
PATEL, R. P. 1973 A.I.A.A. J. 11, 67. 
SPENCER, B. W. 1970 Ph.D. thesis, Department of Nuclear Engineering, University of 

Illinois. 
SPENCER, B. W. & JONES, B. G. 1971 A.I.A.A. Paper, no. 71-613. 
STEWART, R. W., WILSON, J. R. & BURLING, R. W. 1970 J. Fluid Mech. 41, 141. 
SUNYACH, M. 1971 Ph.D. thesis, L’Universite’ Claude Bernard de Lyon. 
TENNEKES, H. & LUMLEY, J. L. 1972 A First Course in Turbulence. M.I.T. Press. 
TENNEKES, H. & WYNUAARD, J. C. 1972 J. Fluid Mech. 55, 93. 

S h a r  Plows, London. 

515, p. 373. 

18-1. 

ture Notes in Physics, vol. 12, p. 426. Springer. 



250 P. H .  Champagne, Y .  H .  Pao and I .  J ,  Wygnanski 

VAN ATTA, C. W. & CHEN, W. Y. 1970 J .  Fluid Mech. 44, 145. 
WEILER, H. S. & BURLING, R. W. 1967 J .  Atmos. Sci. 24, 653. 
WINANT, C. 1972 Ph.D. thesis, Department of Aerospace Engineering, University of 

WYGNANSKI, I. J. t FIEDLER, H. 1970 J .  Fluid Mech. 41, 327. 
WYQNANSKI, I. J. & GARTSHORE, I. S. 1963 McCfill University, Mech. Engng Tech. Noh, 

no. 63-7. 
WYNGAARD, J. C. 1968 J .  Sci. Imtrum. 1 (2), 1105. 
WYNGAARD, J. C. 1969 J .  Sci. Imtrum. 2 (2), 983. 
WYNGAARD, J. C. t PAO, Y. H. 1972 In Proc. of Symp. on Statistical Modeb and Turbu- 

WYNGAARD, J. C. t TENNEPES, H. 1970 Phys. F'luide, 13, 1962. 
YAaLoM, A. M. 1966 Dokl. Akad. Nauk. SSR, 116, 49. 

Southern California. 

lence, Lecture Note8 in Phy&Cs, vol. 12, p. 384, Springer. 


